First-order Resonance Overlap and the Stability of Close Two-planet Systems

نویسندگان

  • Matthew Payne
  • Matthew J. Holman
  • Katherine M. Deck
چکیده

Motivated by the population of observed multi-planet systems with orbital period ratios 1 < P2/P1 2, we study the long-term stability of packed two-planet systems. The Hamiltonian for two massive planets on nearly circular and nearly coplanar orbits near a first-order mean motion resonance can be reduced to a one-degree-of-freedom problem. Using this analytically tractable Hamiltonian, we apply the resonance overlap criterion to predict the onset of large-scale chaotic motion in close two-planet systems. The reduced Hamiltonian has only a weak dependence on the planetary mass ratio m1/m2, and hence the overlap criterion is independent of the planetary mass ratio at lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the chaotic phase space for close orbits in the low-eccentricity (e 0.1) regime. We show numerically that orbits in the chaotic web produced primarily by first-order resonance overlap eventually experience large-scale erratic variation in semimajor axes and are therefore Lagrange unstable. This is also true of the orbits in this overlap region which satisfy the Hill criterion. As a result, we can use the first-order resonance overlap criterion as an effective stability criterion for pairs of observed planets. We show that for low-mass ( 10 M⊕) planetary systems with initially circular orbits the period ratio at which complete overlap occurs and widespread chaos results lies in a region of parameter space which is Hill stable. Our work indicates that a resonance overlap criterion which would apply for initially eccentric orbits likely needs to take into account second-order resonances. Finally, we address the connection found in previous work between the Hill stability criterion and numerically determined Lagrange instability boundaries in the context of resonance overlap.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

Fuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems

In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...

متن کامل

Resonance Overlap Is Responsible for Ejecting Planets in Binary Systems

A planet orbiting around a star in a binary system can be ejected if it lies too far from its host star. We find that instability boundaries first obtained in numerical studies can be explained by overlap between sub-resonances within mean-motion resonances (mostly of the j:1 type). Strong secular forcing from the companion displaces the centroids of different sub-resonances, producing large re...

متن کامل

Extrasolar Planet Interactions

The dynamical interactions of planetary systems may be a clue to their formation histories. Therefore, the distribution of these interactions provides important constraints on models of planet formation. We focus on each system’s apsidal motion and proximity to dynamical instability. Although only ∼25 multiple planet systems have been discovered to date, our analyses in these terms have reveale...

متن کامل

Analysis of the nonlinear axial vibrations of a cantilevered pipe conveying pulsating two-phase flow

The parametric resonance of the axial vibrations of a cantilever pipe conveying harmonically perturbed two-phase flow is investigated using the method of multiple scale perturbation. The nonlinear coupled and uncoupled planar dynamics of the pipe are examined for a scenario when the axial vibration is parametrically excited by the pulsating frequencies of the two phases conveyed by the pipe. Aw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013